II B.Tech - II Semester - Regular / Supplementary Examinations MAY - 2023

TRANSFORM TECHNIQUES, NUMERICAL METHODS AND NUMBER THEORY (INFORMATION TECHNOLOGY)

Duration: 3 hours
Max. Marks: 70
Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level
CO - Course Outcome

| UNIT-I | | BL | CO | Max.
 Marks | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | a) | Estimate the Laplace transform of the
 function $\mathrm{f}(\mathrm{t})=\|t-1\|+\|t+1\| ; t \geq 0$. | L 2 | CO 1 | 7 M |
| | b) | Calculate the Laplace Transform of
 $e^{-t}(\sin 2 t-2 t c o s 2 t)$ | L 3 | CO 2 | 7 M |
| 2 | a) | Discover the Laplace Transform of $\mathrm{t} \sin ^{2} 3 t$. | L 3 | CO 2 | 7 M |
| | b) | Manipulate the Laplace transform of $\frac{1-\operatorname{cost}}{t^{2}}$. | L 3 | CO 2 | 7 M |

	b)	Discover $L^{-1}\left[\frac{s^{2}}{\left(s^{2}+a^{2}\right)\left(s^{2}+b^{2}\right)}\right]$ by using convolution theorem.							L3	CO 2	7 M
OR											
	a)	Calculate $L^{-1}\left[\cot ^{-1}\left(\frac{s}{2}\right)\right]$							L3	CO 2	7 M
	b)	Solve $\frac{d^{2} x}{d t^{2}}+9 x=\cos 2 t$ if $x(0)=1, x\left(\frac{\pi}{2}\right)=-1$ by Laplace transform method.							L3	CO 2	7 M
UNIT-III											
5	a)	Apply Bisection method to find a real root of the equation $x^{3}-x-11=0$.							L3	CO3	7 M
	b)	The population of a town in the decimal census was given below. Appraise the population for the year 1895.							L4	CO 4	7 M
		year x Population y (thousands)		1891	1901	1911	1921	1931			
				46	66	81	93	101			
OR											
6	a)	Discover a real root of the equation $2 x-\log _{e} x=7$ by regula-falsi method correct to four decimal places.							L3	CO 3	7 M
	b)	Apply Lagrange's formula to discriminate the value of $\mathrm{f}(6)$ from the following data.							L4	CO 4	7 M
			1	2	4	7		8			
		$f(x)$	22	30	82		06	206			

UNIT-IV

7		Using Taylor's series method find y at $x=1.1$ and 1.2 by solving $\frac{d y}{d x}=x^{2}+y^{2}$ given $y(1)=2.3$	L3	CO 3	14 M
OR					
8		Using modified Euler's method calculate an approximate value of y corresponding to $x=0.3$ given that $\frac{d y}{d x}=x+y, y(0)=1$.	L3	CO3	14 M
UNIT-V					
9		a) Estimate gcd $(1769,2378)$ using division algorithm.	L2	CO1	7 M
		b) Identify the least positive residue of 3^{201} modulo 11.	L2	CO1	7 M
OR					
10		a) Using Fermat's little theorem, describe the solutions of the linear congruence $7 \mathrm{x} \equiv 12$ modulo 7 .	L2	CO1	7 M
		b) Solve the system of congruence $\mathrm{x} \equiv 1$ modulo 3 $x \equiv 2$ modulo 5 $x \equiv 3$ modulo 7 by Chinese remainder theorem.	L2	CO1	7 M

